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ABSTRACT 

Despite intensive study, a comprehensive understanding of 
the structure of capital market trading data remains elusive. 
The one known application of audification to market price 
data reported in the 1990 that it was difficult to interpret the 
results probably because the market does not resonate 
according to acoustic laws. This paper reports on a technique 
transforming the data so it does resonate, so audification can 
be used as a means of identifying autocorrelation in capital 
market trading data. The results obtained indicate that the 
technique may have a wider application to other similarly 
structured time-series data. 

1. INTRODUCTION 

The statistical analysis of trading data, and stochastic 
modelling using that analysis, is an area of ongoing 
quantitative research in finance. Two principal concerns are 
to find techniques to accurately describe the way prices are 
distributed statistically and to what extent or auto-correlation 
exists and can be detected, even pre-empted, as market prices 
evolve. Understanding the first is important for the risk 
analysis of various trading instruments in the longer term, 
and understanding the second is important in attempts to 
predict future, especially catastrophic, events. 

The power of visual representation to enhance and 
deepen an understanding of phenomena through their data 
abstractions is undisputed. Yet, as with many time-domain 
processes, a visual representation does not always reveal the 
structure of the data. Mandelbrot, arguably the most well 
known Quant1, argues that is not possible to visually 
distinguish graphs of real market data and those of 
Brownian-motion-generated data2 [30]. This leads to a data 
sonification question, which the research reported in this 
paper seeks to answer: Can trading data be presented in a 

                                                             
1 The term ‘Quant’ is used in the field to identify those who and 
quantitative analyse capital market data, or use such analysis to 
construct investment portfolios with a specific risk profile. See §2.2. 
2 Brownian motion is an independent (that is uncorrelated) random 
walk in which the size and direction of the next (price) move is 
independent of the previous move(s). A statistical analysis of time 
series data is concerned with the distribution of values without taking 
into account their sequence in time. 

way that permit its autocorrelation to be aurally distinguished 
from similar, but uncorrelated, data?3 

This investigation was conducted during the development 
of software solutions in the SoniPy environment for the 
sonification of large multidimensional datasets [44]. As such, 
the primary emphasis was tool development and perceptual 
testing was informal. 

2. THE DATA 

The importance of understanding the data itself before 
attempting to sonify it has been long emphasised [5]. As will 
be discussed later, it is important in this particular 
circumstance, to distinguish between real trading data, 
simulated trading data and financial data such as general 
economic indicators, as they usually, arise out of different 
processes, have quite different structural characteristics. 

2.1. Context 

Capital markets are (increasingly virtual) places where 
companies and traders converge around an exchange to raise 
new investment capital, and investors and speculators trade 
exchange-registered securities such as stocks (shares), bonds, 
currencies, futures and other derivatives contracts. These 
exchanges have strict government-regulated mechanisms for 
such activity and the community of freely-participating 
individuals around them communicate more-or-less 
informally with each other and formally through exchange-
registered brokers who themselves provide information to 
their clients about specific trading activity as well as about 
other more general environmental (financial, political, 
meteorological etc) conditions that may affect an individual’s 
trading decisions. Such decisions, enacted by the brokers, 
cause excitations of the trading system, known colloquially 
as a ‘trading engine’, which in turn produces data records of 
its activities. Some of that data, and various summaries of it, 
are fed back for the information of market participants. In 
turn, these marketplaces operate as systems within national 
and global economies and international companies may be 
listed on more than one exchange.  Each exchange’s trading 

                                                             
3 Decorrelation can be achieved by changing the sequence of values 
in a time series. In so doing, any spectral information in the series is 
destroyed, while its statistical properties remain invariant. 
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system is designed to be acephalously appropriate for the 
types of securities that are traded on it. 

Trading engines need to be fast, efficient and accurate4. 
They generate large quantities of data, reflecting the 
moment-to-moment shifting situation of the order book of 
each of their trading securities as potential buyers and sellers 
adjust their declared positions, and then eventually undertake 
trades. Security Trading datasets are sets of time-ordered 
trading events having a number of empirical dimensions, 
such as price and volume5, depending on the particular type 
of security being traded (share, futures, options etc) and from 
which other data may be derived. A medium-sized exchange 
such as the Australian Securities Exchange (ASX) processes 
approximately two million trades a month: an average of 
100,000 trades a day6.  

2.2. Quantitative analysis 

As a discipline in finance, quantitative analysis begins with 
Bachelier's speculation that the market is efficient and thus 
price movement must be a random walk theory [1]. The 
mathematics of random walks was well known and an 
analysis of markets in terms of it enabled the construction of 
portfolios of stocks with defined risk profiles. Benoir 
Mandelbrot's study of price action in cotton led him to 
question this received wisdom, and to develop another 
mathematics, which he called "fractal" to accommodate his 
analytic findings. Fractal mathematics has become a widely 
applicable tool in many fields, both analytic and generative, 
and continues to be the basis of contemporary quantitative 
analysis. Quantitative analysis, especially of high-frequency 
data, remains an area of active research [4] and readable 
introductions are available in the popular science press for 
those less mathematically inclined [38][30].  

Quantitative analysts generally use statistical analysis 
and stochastics to model the risk profiles of market indices, 
segments and individual securities as accurately as possible 
so as to assist in the construction of investment portfolios 
with certain characteristics, such as risk exposure, for 
example. To underestimate the risk of a portfolio is to court 
calamity, while overestimating it invites lower returns than 
might have otherwise been possible.  

                                                             
4 It is somewhat ironic that, in an enterprise that relies on ‘clean’ 
data, financial data often requires considerable ‘washing’ before its 
sonification can be undertaken. This situation is exacerbated by the 
trait that, with datasets over a certain size, the use of metadata 
tagging is uncommon, principally because it significantly increases 
the overall size of the dataset, even though the omission increases the 
likelihood of error. In any event, any cleaning has to be undertaken 
algorithmically and so it is expedient to have the tools for doing so 
integrated with the sonification software being used. 
5 The term ‘volume’ is used throughout to mean ‘trading volume’ 
not as a psychoacoustic parameter. 
6 A breakdown of recent ASX trading volumes is available from 
their website: www.asx.com.au/asx/statistics/TradingVolumes.jsp 

3. PREVIOUS WORK 

3.1. Survey of the sonification of financial data 

The first users of technology-enabled financial market data 
sonification7 were probably the bucket shop traders in the 
early years of the twentieth century, who were reputed to be 
able to differentiate the sounds of stock codes, and prices that 
followed, from the sounds made by their stock-ticker 
machines as they punched recent trading information, 
telegraphed from an exchange, into a strip of rolling paper 
tape [28]. Janata and Childs suggest that Richard Voss may 
have been the first to experiment with the sonification of 
historical financial data: stock prices of the IBM corporation 
[22]. This is possible, as Voss and Mandelbrot were research 
collaborators in fractal mathematics at IBM’s Thomas J. 
Watson Research Center and Voss played an early seminal 
role in the visualisation of fractal structures and in the 
analysis of the fractal dimensions of music and speech 
[41][42]. 

Kramer and Ellison used financial data in the early 
1990’s to demonstrate multivariate sonification mapping 
techniques [24]. This work was later summarized and 
published with sound examples [25]. The trading data used 
included four–and–a–half years of the weekly closing prices 
of a US stock index, a commodity futures index, a 
government T-bond index, the US federal funds interest 
rates, and value of the US dollar. Mappings were to pitch, 
amplitude and frequency modulation (pulsing and detuning), 
filter coefficients (brightness) and onset time (attack). 
Mapping concepts included redundant mapping and datum 
highlighting (beaconing).  

Ben-Tal et al. sonified up to a year’s end–of–day data 
from two stocks simultaneously by mapping them to 
perceptually distinct vowel-like sounds of about one second 
duration [3]. A single trading day was represented as a single 
sound burst. The closing price for the day was mapped to the 
center frequency, and the volume of trade to the bandwidth. 
These values were scaled such that the parameters for the last 
day of trade in each period corresponded to a reference 
vowel. Closing price was mapped to the number of sound 
bursts and volume (the number of trades) to duration. They 
informally observed that they could categorise high volume, 
high price trading days as loud, dense sounds, while low 
volume, low price days were heard as pulsed rhythmic 
sounds.  

Brewster and Murray tested the idea that traders could 
use sounds instead of line-graphs to keep track of stock 
trends when they are away from the trading floor [6]. Using 
                                                             
7 The presence of auditing (hearing of accounts from the Latin 
auditus) has been inferred from records of Mesopotamian 
civilizations going back as early as 3500 BCE. To ensure that the 
Pharaoh was not being cheated, auditors compared the ‘soundness’ 
of strictly independently scribed accounts of commodities moving in, 
out and remaining in warehouses [7]. In the alternating intoning of 
such lists, differences can be easily identified aurally. A faster and 
more secure method that eliminates any ‘copy-cat’ syndrome in such 
alternation, is to have the scribes read the records simultaneously–a 
type of modulation differencing technique. While we have no 
evidence that this specific technique was practiced in ancient times, 
such a suggestion does not seem unreasonable, and would represent 
possibly the earliest form of data sonification. 
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Personal Digital Assistants with limited screen space over a 
wireless network, one month of (presumably intraday) price 
data for a single share was mapped to pitch via MIDI note 
numbers. Participants, all students whose previous trading 
experience was unreported, were required to try to make a 
profit by buying and selling shares while monitoring price 
movement using either line or sound graphs. As trade 
transaction costs appear not to have been factored into the 
calculations, profits or losses were presumably gross. The 
experimental results showed no difference in performance 
between the two modes, but participants reported a 
significant decrease in workload when they used the 
sonification as it enabled them to monitor the price aurally 
while simultaneously using the visual display to execute 
trades. 

Nesbitt and Barrass also undertook a multimodal 
sonification and visualisation study, this of market depth8 to 
test whether subjects could predict the price direction of the 
next trade [34]. They used real data from a single security’s 
order book.  The visualisation used a landscape metaphor in 
which bid and ask orders (to buy and sell), were ‘banked’ on 
either side of a river, the width of which thus represented the 
size of price gap between the highest bid and the lowest ask, 
known as the ‘bid–ask spread’. A wider river implied slower 
flow (fewer trades) and so on. The sonification employed the 
metaphor of an open-outcry market. A sampled male ‘buy’ 
and a female ‘sell’ voice displaying a discretely partitioned 
dataset (price, volume, price-divergence) was mapped into a 
discretely partitioned three-dimensional ‘importance space’ 
(pitch, loudness, stereo-location). This experimental design 
illustrates how sonification can be used to assist the 
apprehension of data segmentation such as where the 
trajectory of a parameter under focus changes.  

Janata and Childs developed Marketbuzz as an add-on to 
conventional trader’s terminals, such as those by Bloomberg, 
for the sonification of real-time financial data [23]. They 
used it to evaluate tasks involving the monitoring of changes 
in the direction of real-time price movements, with and 
without auditory or visual displays. A significant increase in 
accuracy using auditory displays was reported, especially 
when traders were visually distracted by a simultaneous 
diversionary “number-matching” task. Further, Childs details 
the use of sonification to highlight significant price 
movements relative to opening price, as well as continually 
changing features of Stock Options [8]. 

Mezrich, Frysinger and Slivjanovski developed a 
dynamic representation, employing both auditory and visual 
components, for redundantly displaying multiple multivariate 
time-series [32]. Each variable was represented by a 
particular timbre. The values of the variable were mapped to 
pitch. The analyst could focus on a subset of the data by 
interactively brightening or muting individual variables and 
could play the data both forwards and backwards. Subsets of 
the data could be saved and juxtaposed next to each other in 
order to compare areas where the data might be similar. In 
almost all cases, the sonified data performed as well as or 
better than the static displays. 

Two other types of sonifications of securities data 
demonstrate different motivations but are mentioned here for 
completeness. The first is Ciardi’s sMax, a toolkit for the 

                                                             
8 Market depth is a term used to denote the structure of potential buy 
and sell orders clustered around the most recently traded price. 

auditory display of parallel internet-distributed stock-market 
data [9]. sMax uses a set of Java and Max modules to enable 
the mapping and monitoring of real time stock market 
information into recognizable musical timbres and patterns. 
The second is Mauney and Walker’s rendering of dynamic 
data specifically for peripheral auditory monitoring. The 
system reads and parses simulated real-time stock market 
data that it processes through various gates and limiters to 
produce a changing soundscape of complementary ecological 
sounds [31].  

There are a number of studies, principally those whose 
purpose was the study of parameter-mapping and auditory 
graphs, which have been omitted from this survey because it 
is not clear that there is anything in the findings specific to 
the structure of financial data; unless it is generated using 
advanced modelling techniques, fictional data is unlikely to 
exhibit the same structural characteristics as real financial 
time series data. 

3.2. Audification 

In the 1990’s Frysinger experimented with playing back 
market price data directly as a sound waveform. He reported 
that he found that the results proved difficult to interpret, 
probably because the stock market does not follow physical-
acoustic resonance laws resulting in natural or ‘ecological’ 
sounds that can be understood from everyday listening 
experience [16][17]. There appears to be no further reports of 
security data audification prior to the work reported in this 
paper. Hayward also suggested that another reason 
audification fails for arbitrary data such as stock market 
figures or daily temperatures is that the amount of data 
required: even at low sampling rates, it is difficult to make a 
sound with a duration long enough to reveal valuable 
information to the listener [21]. 

In summarizing previous work on seismic audification, 
Hayward reported both Speeth’s original experiment on 
discriminating the seismic sounds of earthquakes from 
atomic explosions and Frantti’s repeat of it with a larger 
number of participants with less training and data from 
diverse locations. Frantti found a lower average accuracy and 
a wider variance in participant performance, which was also 
critically affected by the audification’s time-compression 
ratio and the number of repeat audits. Neither study used 
trained seismologists, nor did participants have any 
interactive control [15][11]. Concentrated on single wavelett 
and quantitative questions, Hayward indicated a number of 
solutions to the difficulties encountered as well as some 
strategic extensions to planetary seismology in general. 
Dombois reported that he could hear seismological station-
specific characteristics in his time-compressed audifications 
[12]. He informally found that, over time, overall information 
of a dynamic state was better comprehended with 
audification, whereas visualization was more effective when 
a detailed analysis of a single wavelett was required. He 
developed a unified acceleration method to make records 
taken under different meteorological and seismic conditions 
more compatible and in a later report on the state of research 
in auditory seismology, documented several other 
investigations in the field in the 1990s and much earlier [13]. 
He reported an increase in interest among seismologists, and 
this is also evidenced by the recent reporting in the popular 
media of the audification of stellar seismology [19]. 
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Figure 1. A plot of the 22 years of daily closing values of the 
ASX’s All-Ordinaries Index (XAO). 

 
 

Using data from a helicopter flight recorder, Pauletto and 
Hunt showed that audification can be used as an equally 
effective alternative to spectrograms for the discernment of 
complex time-series data attributes such as noise, repetitive 
elements, regular oscillations, discontinuities, and signal 
power [35]. However, another empirical experiment found 
that the use of audification to represent data related to the 
rubbing of knee-joint surfaces was less effective at showing 
the difference between normal and abnormal signals than 
other sonification techniques [27]. 

3.3. Sonification of stochastic functions 

Aside from their use in algorithmic music composition, 
stochastic functions have received little attention in 
sonification research. Perhaps the first was a study of use of 
parameter-mapping and physical model sonification is used 
in a series of experiments in monitoring the performance of 
Markov chain Monte-Carlo simulations for generating 
statistical data from higher dimensional probability density 
functions [22]. The inclusion of some sound-generating tools 
in the statistical package R has the potential to generate 
wider interest, as exemplified by its use in tuning a parameter 
in the Hybrid Monte-Carlo algorithm  [20]. Informal auditing 
of a technique to sonify, using amplitude modulation, cross-
correlations in irregularly spiking sequences that resemble a 
Poisson process led to the postulation that the use of 
sonification for time series analysis is superior to 
visualisation in cases where the intrinsic non-stationarity of 
an experiment cannot be ruled out [2]. Time series data was 
generated by shaping a uniform distribution (white noise) 
with a cumulative probability density function, (similar to 
that used by Xenakis for his ST series of compositions [45]), 
in a differentiation study of the perceptualisation of some 
statistical properties of time series data generated using a 
Lévy skew alpha-stable distribution of interest to modellers 
of financial time series [38]. The study found no evidence 
that skewness in their data was perceivable, but participants 
were able to distinguish differences in kurtosis, which 
correlated with roughness or sharpness of the sound. This 
research provided empirical support for a part of the earlier 
initial findings of the experiments outlined below [44]. 

4. INFORMAL EXPERIMENTS 

The experiments described here sought to (a) discover a way 
to directly audify a Capital Market Trading Dataset that 
preserved its autocorrelation characteristics and (b) ascertain 
informally whether such a dataset can be aurally 
discriminated from an audification of a statistically 
equivalent uncorrelated dataset. The null hypothesis in each 
case was that no distinction could reliably be made between 
the audifications. 

4.1. The dataset 

The dataset chosen is twenty-two years of the daily 
closing price of All Ordinaries Index (ticker XAO) of the 

Australian Securities Exchange (ASX)9 as illustrated by the 
plot in Figure 1. 
The first task was to find a way to overcome the non-
resonance problem referred to earlier as discussed by 
Hayward [21]; one that transformed the dataset to be suitably 
oscillatory while preserving its correlational integrity. An 
equivalent problem is to be found in quantitative analysis, as 
observed by Stony Brook computer scientist Steven Skiena: 
 

The price of an asset as a function of time is 
perhaps the most natural financial time series, 
but it is not the best way to manipulate the 
data mathematically. The price of any 
reasonable asset will increase exponentially 
with time, but most of our mathematical tools 
(e.g. correlation, regression) work most 
naturally with linear functions. The mean 
value of an exponentially-increasing time 
series has no obvious meaning. The derivative 
of an exponential function is exponential, so 
day-to-day changes in price have the same 
unfortunate properties. [38] 

 
The Net Return, or simply, the Return, is a complete and 
scale-free summary of investment performance that oscillates 
from positive values (increase) around zero (no change). The 
XAO dataset was converted to market returns. For an asset 
whose price changed from pt at time t to pt+∂t at time t+∂t, the 
simple linear return Rlin is defined as 

Rlin = pt+!t " pt               (1) 
Because prices tend to move exponentially over longer 
timeframes time, that is, in percentage terms, a better 
measure than Rlin is the ratio of successive price differences 
to the initial prices. These are known as net linear returns [3]: 

 R
net

=
p
t+!t

" p
t

p
t

              (2) 

Figure 2 is a plot of net returns of the XAO dataset. The 
insert is of the first 500 samples, similarly to the Figure 1 
insert. Table 1 summarises the statistical properties of these 
returns, clearly showing that they are not a normally 

                                                             
9 The XAO is the broad Australian market indicator, a composite of 
the 500 largest companies, weighted by capitalisation, which are 
listed on the exchange. Contextual details are available at 
http://www.asx.com.au/research/indices/description.htm 
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Figure 3 An histogram of net returns that 
illustrates the proportion of the dataspace 
 allocated to a single negative outlier. 

Figure 4. Plot of XAO net returns, clipped so as 
to be suitable for audification. 

Figure 6. A plot of the correlated (top) and 
decorrelated net returns. 

Figure 5.  Histogram of the clipped net returns 
overlayed with a simulated normal distribution 
with the same standard deviation and number of 
datum for comparison. 

distributed. The single largest Net Return, clearly visible in 
Figures 1 and 2, was on 20 October 1987 (“black” Tuesday) 
the largest one-day percentage decline in stock market 
history. The difference between this largest minimum and the 
second-largest minimum is 62% of the total returns space. 
This is shown in the histogram of Figure 3, which illustrates 
the frequency of net returns. The single minimum and 
second-largest minimum are circled, but barely visible at this 
scale. 

 
number of samples 5725 
minimum sample 0.333204213 
maximum sample 0.05886207483 
arithmetic mean 2.1748845e04 
variance 9.5685881e-05 
skewness 7.6491182 
kurtosis 241.72988 

Table 1: Basic statistics for XAO net returns. 
 

So, despite its anecdotal interest, an ‘audacious’ clipping, or 
limiting, of the largest minimum sample to that of the 
second-largest minimum, was performed and the resulting 
returns plotted in Figure 4. Its histogram is show in Figure 5, 
which illustrates both the skewness and kurtosis of the 
dataset, when compared to a normal distribution. The size of 
the sample-bins of this histogram is kept constant to those of 
the Figure 4 histogram by decreasing the number of bins. Of 
interest is the asymmetry of the outliers (the data at the 
extremities): there are more of the negative variety than 
positive, and negative ones exist further from the mean; even 
more so when considering this is the clipped dataset. 

For comparison, the net returns were we decorrelated. 
Figure 6 shows the plots of both the correlated and 
decorrelated datasets. A number of features are visually 
apparent. Both have long tails but they appear more evenly 
distributed throughout the decorrelated dataset, contributing 
to its more chaotic visual appearance, whilst the correlated 
dataset appears to have periods of increasing (trapezoid), low 
(circle), and ramped (diamond) volatility. 

 

4.2. Experiment 1: Audification  

In order to test whether the raw and decorrelated data sets 
could be distinguished aurally, a number of chunks of audio 
were prepared with the same number of samples as the Net 
Returns. 

A. Uniformly distributed   
B. Normally distributed (Gaussian) 
C. Decorrelated Returns    
D. Raw Returns 

Figure 2. A plot of XAO net returns 
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In Audio Example 1 these four chunks can be heard four 
times at a sample rate of 8 kHz in the order A-B-C-D. Each 
audio chunk is approx. 0.7 seconds duration. There is a one-
second gap between each chunk and a further one-second gap 
between repeats. The following informal observations can be 
made: 
� The uniformly distributed noise (A) is clearly 

distinguishable from the Gaussian (B). This distinction 
is unsurprising: it is that between white and band-
limited noise in electronic music parlance. As would be 
expected, the uniformly random noise sounds “brighter” 
because of the comparatively greater prevalence of 
higher frequencies. 

� The raw and decorrelated returns (D and C) are clearly 
distinguishable from A and B: Qualitatively, they sound 
rougher or grainier, and they have less evenly 
distributed spectral energy than A and B. This can be 
interpreted as a result of the increase kurtosis, as 
reported in an empirical study by Baier et al. [2]. 

� The 8 kHz sampling rate was settled on after some 
initial heuristic experimentation with higher and lower 
values. There appears to be an optimal compromise 
between durations long enough for possible temporal 
patterns to be perceptible and sampling rates high 
enough to make shorter-term correlations perceptible. 
No formal method for determining the optimization 
seems to be currently known, yet the choice clearly 
influences the perceptibility of pattern, as was also 
observed by Dombois in his seismic audification studies 
[12][13]. 

4.3. Experiment 2: Audification 

Having ascertained that the Returns were clearly 
distinguishable from uniform and Gaussian noise, a second 
experiment was conducted to ascertain whether or not the 
raw Returns and the decorrelated Returns could be aurally 
distinguished from each other. An additional Decorrelated 
Return (E) was generated in the same manner described for 
C, in Experiment 1, and three files were prepared with the 
following sequences in which the original raw returns (D) 
was placed in first second and third place respectively: 

 
Audio Example 2. D-C-E 
Audio Example 3 C-D-E 
Audio Example 4 C-E D 

 
The listening task, on multiple random presentations of these 
audio files, was to try to determine, in each case, which one 
of the three chunks sounded different from the other two. The 
informal findings of several listeners, all of who had musical 
training, can be summarised as follows: 
� The task was a more cognitively demanding than those 

in Experiment 1.  

� Distinguishability was dependent on a narrower band of 
sampling rates. Above 8 kHz the characteristics 
described earlier seem to disappear. Below 3-4 kHz the 
roughness created by the individuation of large-valued 
samples meant that the principal means of identifying 
the raw returns was probably more by its invariance 
across all chunk presentations than by direct chunk 
comparison.   

� Between 4 kHz and 8 kHz sampling rate, a distinct, 
though subtle, amplitude modulation was observable in 
the Net Return chunks that seems not to be present in 
the decorrelated ones. This amplitude modulation effect 
required attentive listening, probably, in part, due the 
relatively short duration of the audio chunks (less that 
700 ms). 

This last observation pointed to the need for more data to 
enable longer durations or the application of a technique 
other than audification that enables a slower sample 
presentation rate. As no intraday data was available for the 
dataset in question, the latter approach was chosen in 
Experiment 3. 

4.4. Experiment 3: Homomorphic Modulation 
Sonification 

This experiment was designed to test a simple proposition: 
That the four datasets A, B, C and D of Experiment 1 could 
be distinctly identified under homomorphic mapping into a 
pitch-time auditory space. A homomorphic mapping is one in 
which the changes in a dimension of the auditory space track 
changes in a variable in the dataset, with only as few 
mediating translations as are necessary for comprehension 
[26]. A narrow interpretation, called Homomorphic 
Modulation Sonification is used, in which time in the dataset 
was mapped to time in the auditory display and sample value 
was mapped to pitch deviation (both positive and negative) 
from a centre frequency. 

There is a subtle but important distinction between 
Homomorphic Modulation Sonification and the type of 
parametric mapping in which each datum is played as, or 
contributes to, a separate tone with its own amplitude 
envelope. In the separate-tones case, the audio-amplitude 
profile of the resulting audible stream fluctuates from–and–to 
zero, resulting in a sequence of auditory objects individuated 
by more–or–less rapid onset transients. With modulation 
however, a single continuous pulsed waveform results, 
affording the opportunity for the amplitude formant to be 
held relatively constant, resulting in a lower perceptual 
loading [36][4] 

A csound [9] instrument, illustrated in Figure 7, was 
constructed to produce this homomorphic mapping. 
Structurally, this is a basic frequency modulator in which an 
ADSR10 for controlling modulation index is replaced by a 
sample buffer of the AIFF samples. These samples, which 
can be read directly from an audio file, are then used in 
sequence to control the frequency deviation from a user-
defined centre ‘reference’ carrier frequency. 

                                                             
10 Computer music parlance: An ADSR is an Attach-Delay-Sustain-
Release envelope shaper, a common tool for synthetically controlling 
the amplitude evolution of computed sounds. 

Audio Examples 2-4. Three sequences each of 
three audio chunks, two of which (C & E) are 
decorrelated versions of the Net Returns (D). 
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Control was implemented to facilitate heuristic 
investigation of the perceptual space in SoniPy (via MIDI 
and Csound’s Python API)[10] and in MacCsound. Figure 8 
shows the MacCsound controller interface [29]. The setting 
shown is for frequency-modulating a 300Hz tone according 
to the values of successive samples within a range of four 

octaves at the rate of 480 modulations per minute (8 Hz) 
from the Net Returns distribution. With this controller, it is 
possible to dynamically adjust the pitch spread and centre 
frequency during audition. 

 

 

In addition to the sample modulator, the sonification also 
uses has a simple audio ‘tick’ registration tone generator that 
acts as an auditory reminder of the upper, lower and central 
limits of the current render. Both its frequency-of-occurrence 
(secsBtwn) and relative loudness (%gain) is adjustable. 

Audio Examples 5–9 provide various sonic realisations 
of the homomorphic mappings of the Net Returns samples 
generated for Experiments 1 and 2. For consistency, all are 
rendered with the settings illustrated in Figure 8. 
 

• Audio Example 5 is a series of twenty-second 
‘snapshots’ of each of the four sample sets A, B C 
and D. 
• Audio Example 6 is of A. 
• Audio Example 7 is of B 
• Audio Example 8 is of C. 
• Audio Example 9 is of D. 

Audio Examples 5-9 Examples of homomorphic 
mapping sonifications of the four distributions: 
uniform, normal, net returns and decorrelated net 
returns. 

The informal findings of Experiment 3 can be summarised as 
follows: 
� The difference between homomorphic mapping 

sonifications of A, and B is easily noticeable, at least to 
a musically trained listener, as it was in the audifications 
of Experiment 2. The homomorphic mapping of A can 
be observed to be evenly spread across the pitch gamut, 
while the Normal distribution of B can be observed to 
be more closely clustered around the centre of the 
gamut, the mean.  

� Again, C and D are noticeably different to A and B. 
Whilst both C and D appear to have short trending auto-
correlative sequences, those of C (the Net Returns) 
appear more consistently and when they do they appear 
to last for longer periods of time. This is particularly 
noticeable in frequency of sequences of consecutive 
zero or small Net Returns, a characteristic consistent 
with the observation by chartists and technical analysts 
that securities prices frequently shift to a new price 
‘zone’ quite quickly interspersed with longer times 
consolidating those zones before moving again [33]. 

 
 

5. CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK 

It is apparent from these experiments that the simple 
technique of using net returns is applicable to the sonification 
of capital market trading data and so it may be possible to 
apply the same techniques to other similarly structured time-
series datasets such as electoencephalography data, trans-
synaptic chemical transmitters, and the hierarchical networks 
arising from social affiliations. A further interesting 
extension study would be the application of the techniques to 
the functional simulations of financial-market-like time-
series, an active field of econometric investigation in which 
large datasets can be generated when needed. 

Figure 7. A graphic illustration of the csound 
instrument used for the homomorphic mappings 
experiment. 
 

Figure 8. User interface of the sampling FM instrument. 
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Although other techniques can be applied, the directness 
of audification makes it appealing and controlled empirical 
experiments to determine which features of the dataset are 
perceivable under those conditions would be worthwhile. 
The observation of amplitude modulation in the raw returns 
in Experiment 2 suggests that an empirical study to isolate 
the aural characteristics of cross-correlation, such as the 
spectral modulation suggested by the study, may be useful. 
This would require the preparation of additional, unrelated, 
raw returns datasets of the same sample size.  

The choice of sampling rate clearly influences pattern 
perceptibility, as was also observed in seismic audification 
studies [40] but apart from limiting the resulting frequency 
band imposed, no reliable formal optimization method is 
known and this deserves empirical attention, perhaps by 
using the using the fractal dimension of the dataset as a 
potential correlation index. 

The effect of the size of the dataset on the sampling rate 
also needs to be isolated, as, whether or not higher sampling 
rates on larger datasets reveal other distinguishing features is 
currently not known.  

This investigation was conducted during the development 
of software solutions in the SoniPy environment for the 
sonification of large multidimensional datasets [43]. As such, 
the primary emphasis was tool development and perceptual 
testing was informal. A heavily commented version of the 
script developed for these experiments, along with the audio 
examples is available for download from 
http://www.sonification.com.au/securities. 
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